{ "id": "1704.04440", "version": "v1", "published": "2017-04-14T14:42:50.000Z", "updated": "2017-04-14T14:42:50.000Z", "title": "$\\mathbb{A}^2$ -Fibrations between affine spaces are trivial $\\mathbb{A}^2$-bundles", "authors": [ "Adrien Dubouloz" ], "categories": [ "math.AG" ], "abstract": "We give a criterion for a flat fibration with affine plane fibers over a smooth scheme defined over a field of characteristic zero to be a Zariski locally trivial $\\mathbb{A}^2$-bundle. An application is a positive answer to a version of the Dolgachev-Weisfeiler Conjecture for such fibrations: a flat fibration $\\mathbb{A}^m$ $\\rightarrow$ $\\mathbb{A}^n$ with all fibers isomorphic to $\\mathbb{A}^2$ is the trivial $\\mathbb{A}^2$-bundle.", "revisions": [ { "version": "v1", "updated": "2017-04-14T14:42:50.000Z" } ], "analyses": { "keywords": [ "affine spaces", "flat fibration", "affine plane fibers", "smooth scheme", "characteristic zero" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }