{ "id": "1704.04392", "version": "v1", "published": "2017-04-14T11:02:44.000Z", "updated": "2017-04-14T11:02:44.000Z", "title": "A note on triangular operators on Smooth Sequence Spaces", "authors": [ "Elif Uyanık", "Murat H. Yurdakul" ], "comment": "5 pages", "categories": [ "math.FA" ], "abstract": "For a scalar sequence {(\\theta_n)}_{n \\in \\mathbb{N}}, let C be the matrix defined by c_n^k = \\theta_{n-k+1} if n > k, c_n^k = 0 if n < k. The map between K\\\"{o}the spaces \\lambda(A) and \\lambda(B) is called a Cauchy Product map if it is determined by the triangular matrix C. In this note we introduced some necessary and sufficient conditions for a Cauchy Product map on a nuclear K\\\"{o}the space \\lambda(A) to nuclear G_1-space \\lambda(B) to be linear and continuous. Its transpose is also considered.", "revisions": [ { "version": "v1", "updated": "2017-04-14T11:02:44.000Z" } ], "analyses": { "subjects": [ "47B37", "46A45" ], "keywords": [ "smooth sequence spaces", "triangular operators", "cauchy product map", "scalar sequence", "triangular matrix" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }