{ "id": "1704.03984", "version": "v1", "published": "2017-04-13T03:30:15.000Z", "updated": "2017-04-13T03:30:15.000Z", "title": "Extensions of modules for twisted current algebras", "authors": [ "Jean Auger", "Michael Lau" ], "comment": "23 pages", "categories": [ "math.RT" ], "abstract": "Twisted current algebras are fixed point subalgebras of current algebras under a finite group action. Special cases include equivariant map algebras and twisted forms of current algebras. We compute the extensions between any pair of simple modules in the category of finite-dimensional modules over a twisted current algebra, and then use this information to determine the block decomposition of the category. We illustrate our results with an application to twisted forms of current algebras.", "revisions": [ { "version": "v1", "updated": "2017-04-13T03:30:15.000Z" } ], "analyses": { "keywords": [ "twisted current algebra", "extensions", "equivariant map algebras", "finite group action", "twisted forms" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }