{ "id": "1704.03269", "version": "v1", "published": "2017-04-11T12:51:01.000Z", "updated": "2017-04-11T12:51:01.000Z", "title": "Local Estimate on Convexity Radius and decay of injectivity radius in a Riemannian manifold", "authors": [ "Shicheng Xu" ], "comment": "19 pages", "categories": [ "math.DG" ], "abstract": "In this paper we prove the following pointwise and curvature-free estimates on convexity radius, injectivity radius and local behavior of geodesics in a complete Riemannian manifold $M$: 1) the convexity radius of $p$, $\\operatorname{conv}(p)\\ge \\min\\{\\frac{1}{2}\\operatorname{inj}(p),\\operatorname{foc}(B_{\\operatorname{inj}(p)}(p))\\}$, where $\\operatorname{inj}(p)$ is the injectivity radius of $p$ and $\\operatorname{foc}(B_r(p))$ is the focal radius of open ball centered at $p$ with radius $r$; 2) for any two points $p,q$ in $M$, $\\operatorname{inj}(q)\\ge \\min\\{\\operatorname{inj}(p), \\operatorname{conj}(q)\\}-d(p,q),$ where $\\operatorname{conj}(q)$ is the conjugate radius of $q$; 3) for any $0