{ "id": "1704.03034", "version": "v1", "published": "2017-04-10T19:42:26.000Z", "updated": "2017-04-10T19:42:26.000Z", "title": "On a theorem of Campana and Păun", "authors": [ "Christian Schnell" ], "comment": "8 pages. Comments or questions are most welcome!", "categories": [ "math.AG" ], "abstract": "Let $X$ be a smooth projective variety over the complex numbers, and $\\Delta \\subseteq X$ a reduced divisor with normal crossings. We present a slightly simplified proof for the following theorem of Campana and P\\u{a}un: If some tensor power of the bundle $\\Omega_X^1(\\log \\Delta)$ contains a subsheaf with big determinant, then $(X, \\Delta)$ is of log general type. This result is a key step in the recent proof of Viehweg'shyperbolicity conjecture.", "revisions": [ { "version": "v1", "updated": "2017-04-10T19:42:26.000Z" } ], "analyses": { "keywords": [ "log general type", "smooth projective variety", "tensor power", "complex numbers", "big determinant" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }