{ "id": "1704.02660", "version": "v1", "published": "2017-04-09T20:57:01.000Z", "updated": "2017-04-09T20:57:01.000Z", "title": "Centers of probability measures without the mean", "authors": [ "Giovanni Puccetti", "Pietro Rigo", "Bin Wang", "Ruodu Wang" ], "categories": [ "math.PR" ], "abstract": "We investigate the set of centers of completely and jointly mixable distributions. In addition to several results, we show that, for each $n \\geq 2$, there exist $n$ standard Cauchy random variables adding up to a constant $C$ if and only if $$|C|\\le\\frac{n\\,\\log (n-1)}{\\pi}.$$", "revisions": [ { "version": "v1", "updated": "2017-04-09T20:57:01.000Z" } ], "analyses": { "keywords": [ "probability measures", "standard cauchy random variables adding", "jointly mixable distributions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }