{ "id": "1704.02498", "version": "v1", "published": "2017-04-08T14:19:28.000Z", "updated": "2017-04-08T14:19:28.000Z", "title": "Explicit upper bound for the average number of divisors of irreducible quadratic polynomials", "authors": [ "Kostadinka Lapkova" ], "comment": "Improves the result in arXiv:1509.08243, 11 pages", "categories": [ "math.NT" ], "abstract": "Consider the divisor sum $\\sum_{n\\leq N}\\tau(n^2+2bn+c)$ for integers $b$ and $c$. We extract an asymptotic formula for the average divisor sum in a convenient form, and provide an explicit upper bound for this sum with the correct main term. As an application we give an improvement of the maximal possible number of $D(-1)$-quadruples.", "revisions": [ { "version": "v1", "updated": "2017-04-08T14:19:28.000Z" } ], "analyses": { "keywords": [ "explicit upper bound", "irreducible quadratic polynomials", "average number", "average divisor sum", "correct main term" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }