{ "id": "1704.02131", "version": "v1", "published": "2017-04-07T08:35:57.000Z", "updated": "2017-04-07T08:35:57.000Z", "title": "A characterization related to Schrödinger equations on Riemannian manifolds", "authors": [ "Francesca Faraci", "Csaba Farkas" ], "categories": [ "math.AP" ], "abstract": "In this paper we consider the following problem $$\\begin{cases} -\\Delta_{g}u+V(x)u=\\lambda\\alpha(x)f(u), & \\mbox{in }M\\\\ u\\geq0, & \\mbox{in }M\\\\ u\\to0, & \\mbox{as }d_{g}(x_{0},x)\\to\\infty \\end{cases}$$where $(M,g)$ is a $N$-dimensional ($N\\geq3)$, non-compact Riemannian manifold with asymptotically non-negative Ricci curvature, $\\lambda$ is a real parameter, $V$ is a positive coercive potential, $\\alpha$ is a bounded function and $f$ is a suitable nonlinearity. By using variational methods we prove a characterization result for existence of solutions for our problem.", "revisions": [ { "version": "v1", "updated": "2017-04-07T08:35:57.000Z" } ], "analyses": { "keywords": [ "schrödinger equations", "non-compact riemannian manifold", "real parameter", "characterization result", "variational methods" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }