{ "id": "1704.01928", "version": "v1", "published": "2017-04-06T16:48:57.000Z", "updated": "2017-04-06T16:48:57.000Z", "title": "Lyapunov criteria for uniform convergence of conditional distributions of absorbed Markov processes", "authors": [ "Nicolas Champagnat", "Denis Villemonais" ], "categories": [ "math.PR" ], "abstract": "We study the quasi-stationary behavior of multidimensional processes absorbed when one of the coordinates vanishes. Our results cover competitive or weakly cooperative Lotka-Volterra birth and death processes and Feller diffusions with competitive Lotka-Volterra interaction. To this aim, we develop original non-linear Lyapunov criteria involving two Lyapunov functions, which apply to general Markov processes.", "revisions": [ { "version": "v1", "updated": "2017-04-06T16:48:57.000Z" } ], "analyses": { "subjects": [ "60J27", "37A25", "60B10", "92D25", "92D40" ], "keywords": [ "absorbed markov processes", "uniform convergence", "conditional distributions", "original non-linear lyapunov criteria", "general markov processes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }