{ "id": "1704.01753", "version": "v1", "published": "2017-04-06T08:55:26.000Z", "updated": "2017-04-06T08:55:26.000Z", "title": "Integral representation of binary quadratic forms over rational function fields", "authors": [ "Chang Lv" ], "comment": "14 pages, git commit 20170117/12f7884. arXiv admin note: text overlap with arXiv:1510.04800", "categories": [ "math.NT" ], "abstract": "For diophantine equations of the form ax^2+bxy+cy^2+g=0 over k[t], the ring of integers of rational funtional fields, we show that a condition with respect to the Artin reciprocity map, which we call the Artin condition, is the only obstruction to the local-global principle for integral solutions of the equation. Some concrete examples are presented.", "revisions": [ { "version": "v1", "updated": "2017-04-06T08:55:26.000Z" } ], "analyses": { "subjects": [ "11E12", "11D57", "11R58", "14L30", "11R37" ], "keywords": [ "binary quadratic forms", "rational function fields", "integral representation", "rational funtional fields", "artin reciprocity map" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }