{ "id": "1704.01666", "version": "v1", "published": "2017-04-05T23:14:11.000Z", "updated": "2017-04-05T23:14:11.000Z", "title": "Optimal transport and integer partitions", "authors": [ "Sonja Hohloch" ], "comment": "21 pages, 7 figures; In accordance with the journal's copyright, I am making a preprint version of my published paper available on the ArXiv", "journal": "Discrete Applied Mathematics 190/191 (2015), 75 - 85", "categories": [ "math.NT", "math.CO", "math.OC" ], "abstract": "We link the theory of optimal transportation to the theory of integer partitions. Let $\\mathscr P(n)$ denote the set of integer partitions of $n \\in \\mathbb N$ and write partitions $\\pi \\in \\mathscr P(n)$ as $(n_1, \\dots, n_{k(\\pi)})$. Using terminology from optimal transport, we characterize certain classes of partitions like symmetric partitions and those in Euler's identity $|\\{ \\pi \\in \\mathscr P(n) |$ all $ n_i $ distinct $ \\} | = | \\{ \\pi \\in \\mathscr P(n) | $ all $ n_i $ odd $ \\}|$. Then we sketch how optimal transport might help to understand higher dimensional partitions.", "revisions": [ { "version": "v1", "updated": "2017-04-05T23:14:11.000Z" } ], "analyses": { "subjects": [ "05A17", "11P81", "11P84", "28A25", "49J99", "49K99" ], "keywords": [ "integer partitions", "understand higher dimensional partitions", "write partitions", "eulers identity", "optimal transportation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }