{ "id": "1704.00851", "version": "v1", "published": "2017-04-04T01:55:59.000Z", "updated": "2017-04-04T01:55:59.000Z", "title": "Some Schubert shenanigans", "authors": [ "Richard P. Stanley" ], "comment": "8 pages", "categories": [ "math.CO" ], "abstract": "We give a conjectured evaluation of the determinant of a certain matrix $\\tilde{D}(n,k)$. The entries of $\\tilde{D}(n,k)$ are either 0 or specializations $\\mathfrak{S}_w(1,\\dots,1)$ of Schubert polynomials. The conjecture implies that the weak order of the symmetric group $S_n$ has the strong Sperner property. A number of peripheral results and problems are also discussed.", "revisions": [ { "version": "v1", "updated": "2017-04-04T01:55:59.000Z" } ], "analyses": { "subjects": [ "05E99", "05D05" ], "keywords": [ "schubert shenanigans", "strong sperner property", "weak order", "symmetric group", "peripheral results" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }