{ "id": "1704.00619", "version": "v1", "published": "2017-04-03T14:31:46.000Z", "updated": "2017-04-03T14:31:46.000Z", "title": "A note on automorphic L-Invariants", "authors": [ "Lennart Gehrmann" ], "comment": "14 pages", "categories": [ "math.NT" ], "abstract": "We study the behaviour of automorphic L-Invariants associated to cuspidal representations of GL(2) of cohomological weight 0 under abelian base change and Jacquet-Langlands lifts to totally definite quaternion algebras. Under a standard non-vanishing hypothesis on automorphic L-functions and some technical restrictions on the automorphic representation and the base field we get a simple proof of the equality of automorphic and arithmetic L-invariants. This together with Spiess' results on p-adic L-functions yields a new proof of the exceptional zero conjecture for modular elliptic curves - at least, up to sign.", "revisions": [ { "version": "v1", "updated": "2017-04-03T14:31:46.000Z" } ], "analyses": { "keywords": [ "automorphic l-invariants", "modular elliptic curves", "exceptional zero conjecture", "abelian base change", "p-adic l-functions yields" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }