{ "id": "1703.10922", "version": "v1", "published": "2017-03-31T14:43:10.000Z", "updated": "2017-03-31T14:43:10.000Z", "title": "Topology of automorphism groups of parabolic geometries", "authors": [ "C. Frances", "K. Melnick" ], "comment": "33 pages", "categories": [ "math.DG" ], "abstract": "We prove for the automorphism group of an arbitrary parabolic geometry that the $C^0$ and $C^{\\infty}$ topologies coincide, and the group admits the structure of a Lie group in this topology. We further show that this automorphism group is closed in the homeomorphism group of the underlying manifold.", "revisions": [ { "version": "v1", "updated": "2017-03-31T14:43:10.000Z" } ], "analyses": { "subjects": [ "57S05", "57S20", "53C10" ], "keywords": [ "automorphism group", "arbitrary parabolic geometry", "homeomorphism group", "topologies coincide" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }