{ "id": "1703.10646", "version": "v1", "published": "2017-03-30T19:30:05.000Z", "updated": "2017-03-30T19:30:05.000Z", "title": "A pair of rigid surfaces with $p_g=q=2$ and $K^2=8$ whose universal cover is not the bidisk", "authors": [ "Francesco Polizzi", "Carlos Rito", "Xavier Roulleau" ], "comment": "24 pages, comments welcome", "categories": [ "math.AG" ], "abstract": "We construct two complex-conjugated rigid surfaces with $p_g=q=2$ and $K^2=8$ whose universal cover is not biholomorphic to the bidisk. We show that these are the unique surfaces with these invariants and Albanese map of degree $2$, apart the family of product-quotient surfaces constructed by Penegini. This completes the classification of surfaces with $p_g=q=2, K^2=8$ and Albanese map of degree $2$.", "revisions": [ { "version": "v1", "updated": "2017-03-30T19:30:05.000Z" } ], "analyses": { "subjects": [ "14J29", "14J10" ], "keywords": [ "universal cover", "albanese map", "unique surfaces", "product-quotient surfaces", "complex-conjugated rigid surfaces" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }