{ "id": "1703.10388", "version": "v1", "published": "2017-03-30T10:08:57.000Z", "updated": "2017-03-30T10:08:57.000Z", "title": "The Fredholm alternative for the $p$-Laplacian in exterior domains", "authors": [ "Pavel Drabek", "Ky Ho", "Abhishek Sarkar" ], "comment": "34 pages", "categories": [ "math.AP" ], "abstract": "We investigate the Fredholm alternative for the $p$-Laplacian in an exterior domain which is the complement of the closed unit ball in $\\mathbb{R}^N$ ($N\\geq 2$). By employing techniques of Calculus of Variations we obtain the multiplicity of solutions. The striking difference between our case and the entire space case is also discussed.", "revisions": [ { "version": "v1", "updated": "2017-03-30T10:08:57.000Z" } ], "analyses": { "subjects": [ "35J92", "35J60", "35J20", "35P30", "35J62", "35B40" ], "keywords": [ "exterior domain", "fredholm alternative", "entire space case", "closed unit ball", "variations" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }