{ "id": "1703.10218", "version": "v1", "published": "2017-03-29T19:59:36.000Z", "updated": "2017-03-29T19:59:36.000Z", "title": "Exponential convergence of solutions for random Hamilton-Jacobi equations", "authors": [ "Renato Iturriaga", "Konstantin Khanin", "Ke Zhang" ], "comment": "28 pages", "categories": [ "math.DS" ], "abstract": "We show that for a family of randomly kicked Hamiton-Jacobi equations on the torus, almost surely, the solution of an initial value problem converges exponentially fast to the unique stationary solution. Combined with the results in \\cite{IK03} and \\cite{KZ12}, this completes the program started in \\cite{EKMS00} for the multi-dimensional setting.", "revisions": [ { "version": "v1", "updated": "2017-03-29T19:59:36.000Z" } ], "analyses": { "subjects": [ "35R60", "37J50", "37H99", "37L55", "37D25", "76F20" ], "keywords": [ "random hamilton-jacobi equations", "exponential convergence", "initial value problem converges", "value problem converges exponentially fast", "unique stationary solution" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }