{ "id": "1703.09882", "version": "v1", "published": "2017-03-29T04:24:14.000Z", "updated": "2017-03-29T04:24:14.000Z", "title": "Classification of certain qualitative properties of solutions for the quasilinear parabolic equations", "authors": [ "Yan Li", "Zhengce Zhang", "Liping Zhu" ], "comment": "accepted for publication in SCIENCE CHINA Mathematics", "categories": [ "math.AP" ], "abstract": "In this paper, we mainly consider the initial boundary problem for a quasilinear parabolic equation \\[ u_t-\\mathrm{div}\\left(|\\nabla u|^{p-2}\\nabla u\\right)=-|u|^{\\beta-1}u+\\alpha|u|^{q-2}u, \\] where $p>1,\\beta>0$, $q\\geq1$ and $\\alpha>0$. By using Gagliardo-Nirenberg type inequality, energy method and comparison principle, the phenomena of blowup and extinction are classified completely in the different ranges of reaction exponents.", "revisions": [ { "version": "v1", "updated": "2017-03-29T04:24:14.000Z" } ], "analyses": { "keywords": [ "quasilinear parabolic equation", "qualitative properties", "classification", "initial boundary problem", "gagliardo-nirenberg type inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }