{ "id": "1703.09687", "version": "v1", "published": "2017-03-28T17:50:31.000Z", "updated": "2017-03-28T17:50:31.000Z", "title": "On multicolor Ramsey numbers for loose $k$-paths of length three", "authors": [ "Tomasz Łuczak", "Joanna Polcyn", "Andrzej Ruciński" ], "categories": [ "math.CO" ], "abstract": "We show that there exists an absolute constant $A$ such that for each $k\\ge2$ and every coloring of the edges of the complete $k$-uniform hypergraph on $ Ar$ vertices with $r$ colors, one of the color classes contains a loose path of length three.", "revisions": [ { "version": "v1", "updated": "2017-03-28T17:50:31.000Z" } ], "analyses": { "subjects": [ "05D10", "05C38", "05C55", "05C65" ], "keywords": [ "multicolor ramsey numbers", "color classes contains", "loose path", "absolute constant", "uniform hypergraph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }