{ "id": "1703.09475", "version": "v1", "published": "2017-03-28T09:28:55.000Z", "updated": "2017-03-28T09:28:55.000Z", "title": "Some results on reducibility of parabolic induction for classical groups", "authors": [ "Erez Lapid", "Marko Tadić" ], "categories": [ "math.RT" ], "abstract": "Given a (complex, smooth) irreducible representation $\\pi$ of the general linear group over a non-archimedean local field and an irreducible supercuspidal representation $\\sigma$ of a classical group, we show that the (normalized) parabolic induction $\\pi\\rtimes\\sigma$ is reducible if there exists $\\rho$ in the supercuspidal support of $\\pi$ such that $\\rho\\rtimes\\sigma$ is reducible. In special cases we also give irreducibility criteria for $\\pi\\rtimes\\sigma$ when the above condition is not satisfied.", "revisions": [ { "version": "v1", "updated": "2017-03-28T09:28:55.000Z" } ], "analyses": { "keywords": [ "parabolic induction", "classical group", "non-archimedean local field", "general linear group", "irreducible supercuspidal representation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }