{ "id": "1703.09464", "version": "v1", "published": "2017-03-28T09:03:19.000Z", "updated": "2017-03-28T09:03:19.000Z", "title": "Almost homogeneous curves over an arbitrary field", "authors": [ "Bruno Laurent" ], "comment": "36 pages. Comments are welcome", "categories": [ "math.AG" ], "abstract": "We classify the pairs $(C,G)$ where $C$ is a seminormal curve over an arbitrary field $k$ and $G$ is a smooth connected algebraic group acting faithfully on $C$ with a dense orbit, and we determine the equivariant Picard group of $C$. We also give a partial classification when $C$ is no longer assumed to be seminormal.", "revisions": [ { "version": "v1", "updated": "2017-03-28T09:03:19.000Z" } ], "analyses": { "keywords": [ "arbitrary field", "homogeneous curves", "equivariant picard group", "partial classification", "smooth connected algebraic group acting" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }