{ "id": "1703.08978", "version": "v1", "published": "2017-03-27T09:18:38.000Z", "updated": "2017-03-27T09:18:38.000Z", "title": "Equivalence of Palm measures for determinantal point processes governed by Bergman kernels", "authors": [ "Alexander I. Bufetov", "Shilei Fan", "Yanqi Qiu" ], "comment": "31 pages", "categories": [ "math.PR", "math-ph", "math.DS", "math.FA", "math.MP" ], "abstract": "For a determinantal point process induced by the reproducing kernel of the weighted Bergman space $A^2(U, \\omega)$ over a domain $U \\subset \\mathbb{C}^d$, we establish the mutual absolute continuity of reduced Palm measures of any order provided that the domain $U$ contains a non-constant bounded holomorphic function. The result holds in all dimensions. The argument uses the $H^\\infty(U)$-module structure of $A^2(U, \\omega)$. A corollary is the quasi-invariance of our determinantal point process under the natural action of the group of compactly supported diffeomorphisms of $U$.", "revisions": [ { "version": "v1", "updated": "2017-03-27T09:18:38.000Z" } ], "analyses": { "keywords": [ "determinantal point process", "bergman kernels", "equivalence", "mutual absolute continuity", "non-constant bounded holomorphic function" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }