{ "id": "1703.08315", "version": "v1", "published": "2017-03-24T08:52:29.000Z", "updated": "2017-03-24T08:52:29.000Z", "title": "Extreme values of the Riemann zeta function on the 1-line", "authors": [ "Christoph Aistleitner", "Kamalakshya Mahatab", "Marc Munsch" ], "comment": "7 pages", "categories": [ "math.NT" ], "abstract": "We prove that there are arbitrarily large values of $t$ such that $|\\zeta(1+it)| \\geq e^{\\gamma} (\\log_2 t + \\log_3 t) + \\mathcal{O}(1)$. This matches the prediction for the optimal lower bound in a conjecture of Granville and Soundararajan. Our proof uses a new variant of the \"long resonator\" method. While earlier implementations of this method crucially relied on a \"sparsification\" technique to control the mean-square of the resonator function, in the present paper we exploit certain self-similarity properties of a specially designed resonator function.", "revisions": [ { "version": "v1", "updated": "2017-03-24T08:52:29.000Z" } ], "analyses": { "subjects": [ "11M06" ], "keywords": [ "riemann zeta function", "extreme values", "optimal lower bound", "earlier implementations", "specially designed resonator function" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }