{ "id": "1703.07859", "version": "v1", "published": "2017-03-22T21:20:06.000Z", "updated": "2017-03-22T21:20:06.000Z", "title": "Bergman-Lorentz spaces on tube domains over symmetric cones", "authors": [ "David Bekolle", "Jocelyn", "Cyrille Nana" ], "comment": "23 pages", "categories": [ "math.CA" ], "abstract": "We study Bergman-Lorentz spaces on tube domains over symmetric cones, i.e. spaces of holomorphic functions which belong to Lorentz spaces $L(p, q).$ We establish boundedness and surjectivity of Bergman projectors from Lorentz spaces to the corresponding Bergman-Lorentz spaces and real interpolation between Bergman-Lorentz spaces. Finally we ask a question whose positive answer would enlarge the interval of parameters $p\\in (1, \\infty)$ such that the relevant Bergman projector is bounded on $L^p$ for cones of rank $r\\geq 3.$", "revisions": [ { "version": "v1", "updated": "2017-03-22T21:20:06.000Z" } ], "analyses": { "subjects": [ "32A25", "32M11", "46B70", "46E30" ], "keywords": [ "tube domains", "symmetric cones", "study bergman-lorentz spaces", "relevant bergman projector", "corresponding bergman-lorentz spaces" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }