{ "id": "1703.07772", "version": "v1", "published": "2017-03-22T17:58:00.000Z", "updated": "2017-03-22T17:58:00.000Z", "title": "On Garling sequence spaces", "authors": [ "Fernando Albiac", "José L. Ansorena", "Ben Wallis" ], "comment": "25 pages", "categories": [ "math.FA" ], "abstract": "The aim of this paper is to introduce and investigate a new class of separable Banach spaces modeled after an example of Garling from 1968. For each $1\\leqslant p<\\infty$ and each nonincreasing weight $\\textbf{w}\\in c_0\\setminus\\ell_1$ we exhibit an $\\ell_p$-saturated, complementably homogeneous, and uniformly subprojective Banach space $g(\\textbf{w},p)$. We also show that $g(\\textbf{w},p)$ admits a unique subsymmetric basis despite the fact that for a wide class of weights it does not admit a symmetric basis. This provides the first known examples of Banach spaces where those two properties coexist.", "revisions": [ { "version": "v1", "updated": "2017-03-22T17:58:00.000Z" } ], "analyses": { "subjects": [ "46B25", "46B45", "46B03" ], "keywords": [ "garling sequence spaces", "unique subsymmetric basis despite", "separable banach spaces", "uniformly subprojective banach space", "wide class" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }