{ "id": "1703.06760", "version": "v1", "published": "2017-03-20T14:16:19.000Z", "updated": "2017-03-20T14:16:19.000Z", "title": "On the reflexivity of $\\mathcal{P}_{w}(^{n}E;F)$", "authors": [ "Sergio Pérez" ], "comment": "4 pages", "categories": [ "math.FA" ], "abstract": "In this paper we prove that if $E$ and $F$ are reflexive Banach spaces and $G$ is a closed linear subspace of the space $\\mathcal{P}_{w}(^{n}E;F)$ of all $n$-homogeneous polynomials from $E$ to $F$ which are weakly continuous on bounded sets, then $G$ is either reflexive or non-isomorphic to a dual space. This result generalizes \\cite[Theorem 2]{FEDER} and gives the solution to a problem posed by Feder \\cite[Problem 1]{FED}.", "revisions": [ { "version": "v1", "updated": "2017-03-20T14:16:19.000Z" } ], "analyses": { "subjects": [ "46B10", "46G25" ], "keywords": [ "reflexivity", "reflexive banach spaces", "closed linear subspace", "dual space", "result generalizes" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }