{ "id": "1703.06214", "version": "v1", "published": "2017-03-17T23:09:18.000Z", "updated": "2017-03-17T23:09:18.000Z", "title": "Free 2-step nilpotent Lie algebras and indecomposable modules", "authors": [ "Leandro Cagliero", "Luis Gutierrez", "Fernando Szechtman" ], "categories": [ "math.RT" ], "abstract": "Given an algebraically closed field $F$ of characteristic 0 and an $F$-vector space $V$, let $L(V)=V\\oplus\\Lambda^2(V)$ denote the free 2-step nilpotent Lie algebra associated to $V$. In this paper, we classify all uniserial representations of the solvable Lie algebra $\\mathfrak g=\\langle x\\rangle\\ltimes L(V)$, where $x$ acts on $V$ via an arbitrary invertible Jordan block.", "revisions": [ { "version": "v1", "updated": "2017-03-17T23:09:18.000Z" } ], "analyses": { "keywords": [ "nilpotent lie algebra", "indecomposable modules", "arbitrary invertible jordan block", "vector space", "uniserial representations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }