{ "id": "1703.06178", "version": "v1", "published": "2017-03-17T19:25:12.000Z", "updated": "2017-03-17T19:25:12.000Z", "title": "Optimal stopping of one-dimensional diffusions with integral criteria", "authors": [ "Manuel Guerra", "Cláudia Nunes", "Carlos Oliveira" ], "categories": [ "math.PR" ], "abstract": "This paper provides a full characterization of the value function and solution(s) of an optimal stopping problem for a one-dimensional diffusion with an integral criterion. The results hold under very weak assumptions, namely, the diffusion is assumed to be a weak solution of stochastic differential equation satisfying the Engelbert-Schmidt conditions, while the (stochastic) discount rate and the integrand are required to satisfy only general integrability conditions.", "revisions": [ { "version": "v1", "updated": "2017-03-17T19:25:12.000Z" } ], "analyses": { "subjects": [ "60G40", "60H10", "93E20" ], "keywords": [ "one-dimensional diffusion", "integral criterion", "general integrability conditions", "optimal stopping problem", "engelbert-schmidt conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }