{ "id": "1703.05861", "version": "v1", "published": "2017-03-17T01:09:34.000Z", "updated": "2017-03-17T01:09:34.000Z", "title": "An Improved Bound for Upper Domination of Cartesian Products of Graphs", "authors": [ "Yu-Yen Chien" ], "categories": [ "math.CO" ], "abstract": "In this paper, we prove a problem proposed by Bre\\v{s}ar: for any graphs $G$ and $H$, $\\Gamma(G\\square H)\\ge\\Gamma(G)\\Gamma(H)+ \\min\\{|V(G)|-\\Gamma(G),|V(H)|-\\Gamma(H)\\}$, where $\\Gamma(G)$ denotes the upper domination number of $G$.", "revisions": [ { "version": "v1", "updated": "2017-03-17T01:09:34.000Z" } ], "analyses": { "subjects": [ "05C69", "05C76" ], "keywords": [ "cartesian products", "upper domination number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }