{ "id": "1703.05262", "version": "v1", "published": "2017-03-15T17:03:33.000Z", "updated": "2017-03-15T17:03:33.000Z", "title": "On one class of fractal sets", "authors": [ "Symon Serbenyuk" ], "comment": "15 pages", "categories": [ "math.CA" ], "abstract": "In the present article a new class $\\Upsilon$ of all sets represented in the following form is introduced: $$ \\mathbb S_{(s,u)}\\equiv\\left\\{x: x= \\Delta^{s}_{{\\underbrace{u...u}_{\\alpha_1-1}} \\alpha_1{\\underbrace{u...u}_{\\alpha_2 -1}}\\alpha_2 ...{\\underbrace{u...u}_{ \\alpha_n -1}}\\alpha_n...}, \\alpha_n \\in A_0, \\alpha_n \\ne u, \\alpha_n \\ne 0 \\right\\}, $$ where $2