{ "id": "1703.04971", "version": "v1", "published": "2017-03-15T07:01:45.000Z", "updated": "2017-03-15T07:01:45.000Z", "title": "Concentration inequalities for measures of a Boolean model", "authors": [ "Günter Last", "Fabian Gieringer" ], "categories": [ "math.PR" ], "abstract": "We consider a Boolean model $Z$ driven by a Poisson particle process $\\eta$ on a metric space $\\mathbb{Y}$. We study the random variable $\\rho(Z)$, where $\\rho$ is a (deterministic) measure on $\\mathbb{Y}$. Due to the interaction of overlapping particles, the distribution of $\\rho(Z)$ cannot be described explicitly. In this note we derive concentration inequalities for $\\rho(Z)$. To this end we first prove two concentration inequalities for functions of a Poisson process on a general phase space.", "revisions": [ { "version": "v1", "updated": "2017-03-15T07:01:45.000Z" } ], "analyses": { "subjects": [ "60D05", "60G55" ], "keywords": [ "boolean model", "general phase space", "poisson particle process", "metric space", "poisson process" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }