{ "id": "1703.04948", "version": "v1", "published": "2017-03-15T06:08:13.000Z", "updated": "2017-03-15T06:08:13.000Z", "title": "Complete classification of pseudo $H$-type algebras: II", "authors": [ "Kenro Furutani", "Irina Markina" ], "comment": "29 pages, 7 tables", "categories": [ "math.RT" ], "abstract": "We classify a class of 2-step nilpotent Lie algebras related to the representations of the Clifford algebras in the following way. Let $J\\colon \\Cl(\\mathbb R^{r,s})\\toU$ be a representation of the Clifford algebra $\\Cl(\\mathbb R^{r,s})$ generated by the pseudo Euclidean vector space $\\mathbb R^{r,s}$. Assume that the Clifford module $U$ is endowed with a bilinear symmetric non-degenerate real form $\\la\\cdot\\,,\\cdot\\ra_U$ making the linear map $J_z$ skew symmetric for any $z\\in\\mathbb R^{r,s}$. The Lie algebras and the Clifford algebras are related by $\\la J_zv,w\\ra_U=\\la z,[v,w]\\ra_{\\mathbb R^{r,s}}$, $z\\in \\mathbb R^{r,s}$, $v,w\\in U$. We detect the isomorphic and non-isomorphic Lie algebras according to the dimension of $U$ and the range of the non-negative integers~$r,s$.", "revisions": [ { "version": "v1", "updated": "2017-03-15T06:08:13.000Z" } ], "analyses": { "keywords": [ "complete classification", "type algebras", "clifford algebra", "bilinear symmetric non-degenerate real form", "pseudo euclidean vector space" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }