{ "id": "1703.04508", "version": "v1", "published": "2017-03-13T17:49:13.000Z", "updated": "2017-03-13T17:49:13.000Z", "title": "Pattern Recognition on Oriented Matroids: Decompositions of Topes, and Dehn-Sommerville Type Relations", "authors": [ "Andrey O. Matveev" ], "comment": "5 pages", "categories": [ "math.CO" ], "abstract": "If V(R) is the vertex set of a symmetric cycle R in the tope graph of a simple oriented matroid M, then for any tope T of M there exists a unique inclusion-minimal subset Q(T;R) of V(R) such that T is the sum of the topes of Q(T;R). If |Q(T;R)|>3, then the decomposition Q(T;R) of the tope T with respect to the symmetric cycle R satisfies certain Dehn-Sommerville type relations.", "revisions": [ { "version": "v1", "updated": "2017-03-13T17:49:13.000Z" } ], "analyses": { "keywords": [ "dehn-sommerville type relations", "pattern recognition", "decomposition", "symmetric cycle", "unique inclusion-minimal subset" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }