{ "id": "1703.04229", "version": "v1", "published": "2017-03-13T02:48:38.000Z", "updated": "2017-03-13T02:48:38.000Z", "title": "An indefinite concave-convex equation under a Neumann boundary condition II", "authors": [ "Humberto Ramos Quoirin", "Kenichiro Umezu" ], "categories": [ "math.AP" ], "abstract": "We proceed with the investigation of the problem $(P_\\lambda): $ $-\\Delta u = \\lambda b(x)|u|^{q-2}u +a(x)|u|^{p-2}u \\ \\mbox{ in } \\Omega, \\ \\ \\frac{\\partial u}{\\partial \\mathbf{n}} = 0 \\ \\mbox{ on } \\partial \\Omega$, where $\\Omega$ is a bounded smooth domain in $\\mathbb{R}^N$ ($N \\geq2$), $1