{ "id": "1703.03834", "version": "v1", "published": "2017-03-10T20:15:21.000Z", "updated": "2017-03-10T20:15:21.000Z", "title": "Ramsey-product subsets of a group", "authors": [ "Igor Protasov", "Ksenia Protasova" ], "categories": [ "math.GN" ], "abstract": "We say that a subset $S$ of an infinite group $G$ is a Ramsey-product subset if, for any infinite subsets $X$, $Y$ of $G$, there exist $x \\in X$ and $y\\in Y$ such that $x y \\in S$ and $ y x \\in S$ . We show that the family $\\varphi$ of all Ramsey-product subsets of $G$ is a filter and $\\varphi$ defines the subsemigroup $ \\overline{G^*G^*}$ of the semigroup $G^*$ of all free ultrafilters on $G$.", "revisions": [ { "version": "v1", "updated": "2017-03-10T20:15:21.000Z" } ], "analyses": { "keywords": [ "ramsey-product subset", "infinite group", "infinite subsets" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }