{ "id": "1703.03490", "version": "v1", "published": "2017-03-09T23:33:32.000Z", "updated": "2017-03-09T23:33:32.000Z", "title": "An Expression For The Argument of $ΞΆ$ at Zeros on the Critical Line", "authors": [ "Stephen Crowley" ], "categories": [ "math.NT" ], "abstract": "The function $S_n (t) = \\pi \\left( \\frac{3}{2} - {frac} \\left( \\frac{\\vartheta(t)}{\\pi} \\right) + \\left( \\lfloor \\frac{t \\ln \\left( \\frac{t}{2 \\pi e}\\right)}{2 \\pi} + \\frac{7}{8} \\rfloor - n \\right) \\right)$ is conjectured to be equal to $S (t_n)_{} = \\arg \\zeta \\left( \\frac{1}{2} + i t_n \\right)$ when $t=t_n$ is the imaginary part of the n-th zero of $\\zeta$ on the critical line. If $S(t_n)=S_n(t_n)$ then the exact transcendental equation for the Riemann zeros has a solution for each positive integer $n$ which proves that Riemann's hypothesis is true since the counting function for zeros on the critical line is equal to the counting function for zeros on the critical strip if the transcendental equation has a solution for each $n$.", "revisions": [ { "version": "v1", "updated": "2017-03-09T23:33:32.000Z" } ], "analyses": { "keywords": [ "critical line", "expression", "exact transcendental equation", "counting function", "riemann zeros" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }