{ "id": "1703.03294", "version": "v1", "published": "2017-03-09T15:30:50.000Z", "updated": "2017-03-09T15:30:50.000Z", "title": "Veronese varieties contained in hypersurfaces", "authors": [ "Jason Michael Starr" ], "comment": "19 pages", "categories": [ "math.AG" ], "abstract": "Alex Waldron proved that for sufficiently general degree $d$ hypersurfaces in projective $n$-space, the Fano scheme parameterizing $r$-dimensional linear spaces contained in the hypersurface is nonempty precisely for the degree range $n\\geq N_1(r,d)$ where the \"expected dimension\" $f_1(n,r,d)$ is nonnegative, in which case $f_1(n,r,d)$ equals the (pure) dimension. Using work by Gleb Nenashev, we prove that for sufficiently general degree $d$ hypersurfaces in projective $n$-space, the parameter space of $r$-dimensional $e$-uple Veronese varieties contained in the hypersurface is nonempty of pure dimension equal to the \"expected dimension\" $f_e(n,r,d)$ in a degree range $n\\geq \\widetilde{N}_e(r,d)$ that is asymptotically sharp. Moreover, we show that for $n\\geq 1+N_1(r,d)$, the Fano scheme parameterizing $r$-dimensional linear spaces is irreducible.", "revisions": [ { "version": "v1", "updated": "2017-03-09T15:30:50.000Z" } ], "analyses": { "subjects": [ "14C05", "14J70" ], "keywords": [ "hypersurface", "dimensional linear spaces", "sufficiently general degree", "fano scheme parameterizing", "degree range" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }