{ "id": "1703.02127", "version": "v1", "published": "2017-03-06T22:01:58.000Z", "updated": "2017-03-06T22:01:58.000Z", "title": "On the arithmetic of a family of degree-two K3 surfaces", "authors": [ "Florian Bouyer", "Edgar Costa", "Dino Festi", "Christopher Nicholls", "Mckenzie West" ], "comment": "20 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $\\mathbb{P}$ denote the weighted projective space with weights $(1,1,1,3)$ over the rationals, with coordinates $x,y,z,$ and $w$; let $\\mathcal{X}$ be the generic element of the family of surfaces in $\\mathbb{P}$ given by \\begin{equation*} X\\colon w^2=x^6+y^6+z^6+tx^2y^2z^2. \\end{equation*} The surface $\\mathcal{X}$ is a K3 surface over the function field $\\mathbb{Q}(t)$. In this paper, we explicitly compute the geometric Picard lattice of $\\mathcal{X}$, together with its Galois module structure, as well as derive more results on the arithmetic of $\\mathcal{X}$ and other elements of the family $X$.", "revisions": [ { "version": "v1", "updated": "2017-03-06T22:01:58.000Z" } ], "analyses": { "subjects": [ "11G35", "14J28" ], "keywords": [ "degree-two k3 surfaces", "arithmetic", "geometric picard lattice", "galois module structure", "function field" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }