{ "id": "1703.02054", "version": "v1", "published": "2017-03-06T19:00:06.000Z", "updated": "2017-03-06T19:00:06.000Z", "title": "Independence by Random Scaling", "authors": [ "Lancelot F. James", "Peter Orbanz" ], "categories": [ "math.PR" ], "abstract": "We give conditions under which a scalar random variable T can be coupled to a random scaling factor $\\xi$ such that T and $\\xi$T are rendered stochastically independent. A similar result is obtained for random measures. One consequence is a generalization of a result by Pitman and Yor on the Poisson-Dirichlet distribution to its negative parameter range. Another application are diffusion excursions straddling an exponential random time.", "revisions": [ { "version": "v1", "updated": "2017-03-06T19:00:06.000Z" } ], "analyses": { "keywords": [ "independence", "exponential random time", "negative parameter range", "random measures", "poisson-dirichlet distribution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }