{ "id": "1703.01960", "version": "v1", "published": "2017-03-06T16:39:03.000Z", "updated": "2017-03-06T16:39:03.000Z", "title": "A general approach to branching processes in varying environment", "authors": [ "Götz Kersting" ], "comment": "22 pages", "categories": [ "math.PR" ], "abstract": "Branching processes $(Z_n)_{n \\ge 0}$ in varying environment generalize the Galton-Watson process, in that they allow time-dependence of the offspring distribution. Our main results are general criteria for a.s. extinction and square-integrability of the martingale $(Z_n/\\mathbf E[Z_n])_{n \\ge 0}$ as well as Yaglom type result stating convergence in distribution of the suitably normalized population size $Z_n$, conditioned on the event $Z_n >0$.", "revisions": [ { "version": "v1", "updated": "2017-03-06T16:39:03.000Z" } ], "analyses": { "subjects": [ "60J80" ], "keywords": [ "branching processes", "varying environment", "general approach", "yaglom type result stating convergence", "general criteria" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }