{ "id": "1703.01339", "version": "v1", "published": "2017-03-03T21:03:09.000Z", "updated": "2017-03-03T21:03:09.000Z", "title": "Newton-like dynamics associated to nonconvex optimization problems", "authors": [ "Radu Ioan Bot", "Ernö Robert Csetnek" ], "categories": [ "math.OC", "math.DS" ], "abstract": "We consider the dynamical system \\begin{equation*}\\left\\{ \\begin{array}{ll} v(t)\\in\\partial\\phi(x(t))\\\\ \\lambda\\dot x(t) + \\dot v(t) + v(t) + \\nabla \\psi(x(t))=0, \\end{array}\\right.\\end{equation*} where $\\phi:\\R^n\\to\\R\\cup\\{+\\infty\\}$ is a proper, convex and lower semicontinuous function, $\\psi:\\R^n\\to\\R$ is a (possibly nonconvex) smooth function and $\\lambda>0$ is a parameter which controls the velocity. We show that the set of limit points of the trajectory $x$ is contained in the set of critical points of the objective function $\\phi+\\psi$, which is here seen as the set of the zeros of its limiting subdifferential. If the objective function satisfies the Kurdyka-\\L{}ojasiewicz property, then we can prove convergence of the whole trajectory $x$ to a critical point. Furthermore, convergence rates for the orbits are obtained in terms of the \\L{}ojasiewicz exponent of the objective function, provided the latter satisfies the \\L{}ojasiewicz property.", "revisions": [ { "version": "v1", "updated": "2017-03-03T21:03:09.000Z" } ], "analyses": { "subjects": [ "34G25", "47J25", "47H05", "90C26", "90C30", "65K10" ], "keywords": [ "nonconvex optimization problems", "newton-like dynamics", "critical point", "limit points", "trajectory" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }