{ "id": "1703.01015", "version": "v1", "published": "2017-03-03T02:17:22.000Z", "updated": "2017-03-03T02:17:22.000Z", "title": "Hausdorff operators on holomorphic Hardy spaces and applications", "authors": [ "Ha Duy Hung", "Thai Thuan Quang", "Luong Dang Ky" ], "categories": [ "math.CA", "math.CV" ], "abstract": "The aim of this paper is to characterize the nonnegative functions $\\varphi$ defined on $(0,\\infty)$ for which the Hausdorff operator $$\\mathscr H_\\varphi f(z)= \\int_0^\\infty f\\left(\\frac{z}{t}\\right)\\frac{\\varphi(t)}{t}dt$$ is bounded on the Hardy spaces of the upper half-plane $\\mathcal H_a^p(\\mathbb C_+)$, $p\\in[1,\\infty]$. The corresponding operator norms and their applications are also given.", "revisions": [ { "version": "v1", "updated": "2017-03-03T02:17:22.000Z" } ], "analyses": { "subjects": [ "47B38", "42B30", "46E15" ], "keywords": [ "holomorphic hardy spaces", "hausdorff operator", "applications", "upper half-plane", "corresponding operator norms" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }