{ "id": "1703.00988", "version": "v1", "published": "2017-03-02T23:39:40.000Z", "updated": "2017-03-02T23:39:40.000Z", "title": "Profinite groups and the fixed points of coprime automorphisms", "authors": [ "Cristina Acciarri", "Pavel Shumyatsky" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1702.02899", "journal": "J. Algebra, 452 (2016), 188-196", "doi": "10.1016/j.jalgebra.2016.01.010", "categories": [ "math.GR" ], "abstract": "The main result of the paper is the following theorem. Let $q$ be a prime and $A$ an elementary abelian group of order $q^3$. Suppose that $A$ acts coprimely on a profinite group $G$ and assume that $C_G(a)$ is locally nilpotent for each $a\\in A^{\\#}$. Then the group $G$ is locally nilpotent.", "revisions": [ { "version": "v1", "updated": "2017-03-02T23:39:40.000Z" } ], "analyses": { "subjects": [ "20E18", "20E25", "20F40" ], "keywords": [ "profinite group", "coprime automorphisms", "fixed points", "locally nilpotent", "elementary abelian group" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }