{ "id": "1703.00777", "version": "v1", "published": "2017-03-02T13:35:04.000Z", "updated": "2017-03-02T13:35:04.000Z", "title": "Uniqueness of positive solutions with Concentration for the Schrödinger-Newton problem", "authors": [ "Peng Luo", "Shuangjie Peng", "Chunhua Wang" ], "categories": [ "math.AP" ], "abstract": "We are concerned with the following Schr\\\"odinger-Newton problem \\begin{equation} -\\varepsilon^2\\Delta u+V(x)u=\\frac{1}{8\\pi \\varepsilon^2} \\big(\\int_{\\mathbb R^3}\\frac{u^2(\\xi)}{|x-\\xi|}d\\xi\\big)u,~x\\in \\mathbb R^3. \\end{equation} For $\\varepsilon$ small enough, we show the uniqueness of positive solutions concentrating at the nondegenerate critical points of $V(x)$. The main tools are a local Pohozaev type of identity, blow-up analysis and the maximum principle. Our results also show that the asymptotic behavior of concentrated points to Schr\\\"odinger-Newton problem is quite different from those of Schr\\\"odinger equations.", "revisions": [ { "version": "v1", "updated": "2017-03-02T13:35:04.000Z" } ], "analyses": { "keywords": [ "positive solutions", "schrödinger-newton problem", "uniqueness", "concentration", "local pohozaev type" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }