{ "id": "1703.00668", "version": "v1", "published": "2017-03-02T08:45:59.000Z", "updated": "2017-03-02T08:45:59.000Z", "title": "Periodic points of algebraic actions of discrete groups", "authors": [ "Siddhartha Bhattacharya" ], "comment": "12 pages, no figures", "categories": [ "math.DS" ], "abstract": "Let $\\Gamma$ be a countable group. A $\\Gamma$-action on a compact abelian group $X$ by continuous automorphisms of $X$ is called Noetherian if the dual of $X$ is Noetherian as a ${\\mathbb Z}(\\Gamma)$-module. We prove that any Noetherian action of a finitely generated virtually nilpotent group has a dense set of periodic points.", "revisions": [ { "version": "v1", "updated": "2017-03-02T08:45:59.000Z" } ], "analyses": { "subjects": [ "37B05" ], "keywords": [ "periodic points", "algebraic actions", "discrete groups", "compact abelian group", "finitely generated virtually nilpotent group" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }