{ "id": "1703.00261", "version": "v1", "published": "2017-03-01T12:22:26.000Z", "updated": "2017-03-01T12:22:26.000Z", "title": "A Variant of the Truncated Perron's Formula and Primitive Roots", "authors": [ "D. S. Ramana", "O. Ramaré" ], "categories": [ "math.NT" ], "abstract": "We show under the Generalised Riemann Hypothesis that for every $\\delta>0$, almost every prime $q$ in $[Q,2Q]$ has the expected of prime primitive roots in the interval $[x,x+x^{\\frac{1}2+\\delta}]$ provided $Q$ is not more than $x^{\\frac{2}{3}-\\epsilon}$. We obtain this via a variant of the classical truncated Perron's formula for the partial sums of the coefficients of a Dirichlet series.", "revisions": [ { "version": "v1", "updated": "2017-03-01T12:22:26.000Z" } ], "analyses": { "subjects": [ "11N05", "11M06" ], "keywords": [ "dirichlet series", "prime primitive roots", "classical truncated perrons formula", "partial sums", "generalised riemann hypothesis" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }