{ "id": "1703.00046", "version": "v1", "published": "2017-02-25T10:30:05.000Z", "updated": "2017-02-25T10:30:05.000Z", "title": "The Malgrange form and Fredholm determinants", "authors": [ "Marco Bertola" ], "comment": "13 pages, 2 figures", "categories": [ "math-ph", "math.MP", "nlin.SI" ], "abstract": "We consider the factorization problem of matrix symbols depending analytically on parameters on a closed contour (i.e. a Riemann--Hilbert problem). We show how to define a function $\\tau$ which is locally analytic on the space of deformations and that is expressed as a Fredholm determinant of an operator of \"integrable\" type in the sense of Its-Izergin-Korepin-Slavnov. The construction is not unique and the non-uniqueness highlights the fact that the tau function is really the section of a line bundle.", "revisions": [ { "version": "v1", "updated": "2017-02-25T10:30:05.000Z" } ], "analyses": { "keywords": [ "fredholm determinant", "malgrange form", "riemann-hilbert problem", "line bundle", "factorization problem" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }