{ "id": "1702.08438", "version": "v1", "published": "2017-02-25T01:01:08.000Z", "updated": "2017-02-25T01:01:08.000Z", "title": "Evaluation of the non-elementary integral $\\int e^{λx^α} dx, α\\ge2$, and related integrals", "authors": [ "Victor Nijimbere" ], "comment": "15 pages, 1 figure", "categories": [ "math.CA" ], "abstract": "A formula for the non-elementary integral $\\int e^{\\lambda x^\\alpha} dx$ where $\\alpha$ is real and greater or equal two, is obtained in terms of the confluent hypergeometric function $_1F_1$. This result is verified by directly evaluating the area under the Gaussian Bell curve, corresponding to $\\alpha = 2$, using the asymptotic expression for the confluent hypergeometric function and the Fundamental Theorem of Calculus (FTC). Two different but equivalent expressions, one in terms of the confluent hypergeometric function $_1F_1$ and another one in terms of the hypergeometric function _1F_2, are obtained for each of these integrals, $\\int \\cosh(\\lambda x^\\alpha)dx$, $\\int \\sinh\\lambda x^\\alpha)dx, $\\int \\cos(\\lambda x^\\alpha)dx and $\\int \\sin(\\lambda x^\\alpha)dx, $\\lambda\\in \\mathbb{C}$, \\alpha\\ge2$. And the hypergeometric function $_1F_2$ is expressed in terms of the confluent hypergeometric function $_1F_1$.", "revisions": [ { "version": "v1", "updated": "2017-02-25T01:01:08.000Z" } ], "analyses": { "subjects": [ "26A36", "33C15", "30E15" ], "keywords": [ "confluent hypergeometric function", "non-elementary integral", "related integrals", "evaluation", "gaussian bell curve" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }