{ "id": "1702.08321", "version": "v1", "published": "2017-02-27T15:17:39.000Z", "updated": "2017-02-27T15:17:39.000Z", "title": "Some remarkable infinite product identities involving Fibonacci and Lucas numbers", "authors": [ "Kunle Adegoke" ], "comment": "11 pages", "categories": [ "math.NT" ], "abstract": "By applying the classic telescoping summation formula and its variants to identities involving inverse hyperbolic tangent functions having inverse powers of the golden ratio as arguments and employing subtle properties of the Fibonacci and Lucas numbers, we derive interesting general infinite product identities involving these numbers.", "revisions": [ { "version": "v1", "updated": "2017-02-27T15:17:39.000Z" } ], "analyses": { "subjects": [ "11B39", "11B37" ], "keywords": [ "lucas numbers", "inverse hyperbolic tangent functions", "interesting general infinite product identities", "derive interesting general infinite product", "classic telescoping summation formula" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }