{ "id": "1702.07939", "version": "v1", "published": "2017-02-25T19:26:41.000Z", "updated": "2017-02-25T19:26:41.000Z", "title": "Upper bounds on the smallest size of a saturating set in projective planes and spaces of even dimension", "authors": [ "Daniele Bartoli", "Alexander Davydov", "Massimo Giulietti", "Stefano Marcugini", "Fernanda Pambianco" ], "comment": "14 pages, 34 references, 1 figure", "categories": [ "math.CO", "cs.IT", "math.IT" ], "abstract": "In a projective plane $\\Pi_{q}$ (not necessarily Desarguesian) of order $q$, a point subset $\\mathcal{S}$ is saturating (or dense) if any point of $\\Pi_{q}\\setminus \\mathcal{S}$ is collinear with two points in $\\mathcal{S}$. Modifying an approach of [31], we proved the following upper bound on the smallest size $s(2,q)$ of a saturating set in $\\Pi_{q}$: \\begin{equation*} s(2,q)\\leq \\sqrt{(q+1)\\left(3\\ln q+\\ln\\ln q +\\ln\\frac{3}{4}\\right)}+\\sqrt{\\frac{q}{3\\ln q}}+3. \\end{equation*} The bound holds for all q, not necessarily large. By using inductive constructions, upper bounds on the smallest size of a saturating set in the projective space $\\mathrm{PG}(N,q)$ with even dimension $N$ are obtained. All the results are also stated in terms of linear covering codes.", "revisions": [ { "version": "v1", "updated": "2017-02-25T19:26:41.000Z" } ], "analyses": { "subjects": [ "51E21", "51E22", "94B05" ], "keywords": [ "upper bound", "saturating set", "smallest size", "projective plane", "point subset" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }